Part Number Hot Search : 
400U80D M1010 MC75451 SSM6N R1002 V420LA7P PINF15 1N773A
Product Description
Full Text Search
 

To Download AD854108 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544
FEATURES
Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 A/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output
PIN CONFIGURATIONS
AD8541
OUT A 1 V- 2 +IN A 3
5 V+
4 -IN A
Figure 1. 5-Lead SC70 and 5-Lead SOT-23 (KS and RJ Suffixes)
APPLICATIONS
ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentation Mobile communications Audio outputs Portable systems
NC 1 -IN A 2
AD8541
8 7 6 5
NC V+ OUT A
00935-002
+IN A 3 V- 4
NC
NC = NO CONNECT
Figure 2. 8-Lead SOIC (R Suffix)
GENERAL DESCRIPTION
The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 A per amplifier. Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 A per amplifier, ideal for battery operation. Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages. The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (-40C to +125C). The AD8541 is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available in tape and reel only.
OUT A -IN A +IN A V- 1 2 3 4
AD8542
8 7 6 5
V+ OUT B -IN B +IN B
00935-003
00935-004
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP (R, RM, and RU Suffixes)
OUT A -IN A +IN A V+ +IN B -IN B
OUT B
1 2 3 4 5 6 7
14 OUT D 13 -IN D 12 +IN D
AD8544
11 V- 10 +IN C 9 8 -IN C OUT C
Figure 4. 14-Lead SOIC and 14-Lead TSSOP (R and RU Suffixes)
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2008 Analog Devices, Inc. All rights reserved.
00935-001
AD8541/AD8542/AD8544 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Pin Configurations ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 6 Thermal Resistance ...................................................................... 6 ESD Caution.................................................................................. 6 Typical Performance Characteristics ..............................................7 Theory of Operation ...................................................................... 13 Notes on the AD854x Amplifiers............................................. 13 Applications..................................................................................... 14 Notch Filter ................................................................................. 14 Comparator Function ................................................................ 14 Photodiode Application ............................................................ 15 Outline Dimensions ....................................................................... 16 Ordering Guide .......................................................................... 18
REVISION HISTORY
1/08--Rev. E to Rev. F Inserted Figure 21; Renumbered Sequentially.............................. 9 Changes to Figure 22 Caption......................................................... 9 Changes to Notch Filter Section, Figure 35, Figure 36, and Figure 37 .......................................................................................... 13 Updated Outline Dimensions ....................................................... 16 1/07--Rev. D to Rev. E Updated Format..................................................................Universal Changes to Photodiode Application Section .............................. 14 Changes to Ordering Guide .......................................................... 17 8/04--Rev. C to Rev. D Changes to Ordering Guide .............................................................5 Changes to Figure 3........................................................................ 10 Updated Outline Dimensions....................................................... 12 1/03--Rev. B to Rev. C Updated Format..................................................................Universal Changes to General Description .....................................................1 Changes to Ordering Guide .............................................................5 Changes to Outline Dimensions .................................................. 12
Rev. F | Page 2 of 20
AD8541/AD8542/AD8544 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 2.7 V, VCM = 1.35 V, TA = 25C, unless otherwise noted. Table 1.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol VOS -40C TA +125C IB -40C TA +85C -40C TA +125C Input Offset Current IOS -40C TA +85C -40C TA +125C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain CMRR AVO VCM = 0 V to 2.7 V -40C TA +125C RL = 100 k, VO = 0.5 V to 2.2 V -40C TA +85C -40C TA +125C -40C TA +125C -40C TA +85C -40C TA +125C -40C TA +125C IL = 1 mA -40C TA +125C IL = 1 mA -40C TA +125C VOUT = VS - 1 V f = 200 kHz, AV = 1 VS = 2.5 V to 6 V -40C TA +125C VO = 0 V -40C TA +125C RL = 100 k To 0.1% (1 V step) 65 60 0 40 38 100 50 2 45 500 0.1 4 Conditions Min Typ 1 Max 6 7 60 100 1000 30 50 500 2.7 Unit mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV V/C fA/C fA/C fA/C V V mV mV mA mA dB dB A A V/s s kHz Degrees
Offset Voltage Drift Bias Current Drift Offset Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density
VOS/T IB/T IOS/T VOH VOL IOUT ISC ZOUT PSRR ISY
4 100 2000 25 2.575 2.550 2.65 35 15 20 50 76 38 55 75 100 125
SR tS GBP M en en in
0.4
0.75 5 980 63
f = 1 kHz f = 10 kHz
40 38 <0.1
nV/Hz nV/Hz pA/Hz
Rev. F | Page 3 of 20
AD8541/AD8542/AD8544
VS = 3.0 V, VCM = 1.5 V, TA = 25C, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol VOS -40C TA +125C IB -40C TA +85C -40C TA +125C Input Offset Current IOS -40C TA +85C -40C TA +125C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain CMRR AVO VCM = 0 V to 3 V -40C TA +125C RL = 100 k, VO = 0.5 V to 2.2 V -40C TA +85C -40C TA +125C -40C TA +125C -40C TA +85C -40C TA +125C -40C TA +125C IL = 1 mA -40C TA +125C IL = 1 mA -40C TA +125C VOUT = VS - 1 V f = 200 kHz, AV = 1 VS = 2.5 V to 6 V -40C TA +125C VO = 0 V -40C TA +125C RL = 100 k To 0.01% (1 V step) 65 60 0 40 38 100 50 2 45 500 0.1 4 Conditions Min Typ 1 Max 6 7 60 100 1000 30 50 500 3 Unit mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV V/C fA/C fA/C fA/C V V mV mV mA mA dB dB A A V/s s kHz Degrees nV/Hz nV/Hz pA/Hz
Offset Voltage Drift Bias Current Drift Offset Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density
VOS/T IB/T IOS/T VOH VOL IOUT ISC ZOUT PSRR ISY
4 100 2000 25 2.875 2.850 2.955 32 18 25 50 76 40 60 75 100 125
SR tS GBP M en en in
0.4
0.8 5 980 64 42 38 <0.1
f = 1 kHz f = 10 kHz
Rev. F | Page 4 of 20
AD8541/AD8542/AD8544
VS = 5.0 V, VCM = 2.5 V, TA = 25C, unless otherwise noted. Table 3.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol VOS -40C TA +125C IB -40C TA +85C -40C TA +125C Input Offset Current IOS -40C TA +85C -40C TA +125C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain CMRR AVO VCM = 0 V to 5 V -40C TA +125C RL = 100 k, VO = 0.5 V to 2.2 V -40C TA +85C -40C TA +125C -40C TA +125C -40C TA +85C -40C TA +125C -40C TA +125C IL = 1 mA -40C TA +125C IL = 1 mA -40C TA +125C VOUT = VS - 1 V f = 200 kHz, AV = 1 VS = 2.5 V to 6 V -40C TA +125C VO = 0 V -40C TA +125C RL = 100 k, CL = 200 pF 1% distortion To 0.1% (1 V step) 65 60 0 40 38 20 10 2 48 40 0.1 4 Conditions Min Typ 1 Max 6 7 60 100 1000 30 50 500 5 Unit mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV V/C fA/C fA/C fA/C V V mV mV mA mA dB dB A A V/s kHz s kHz Degrees nV/Hz nV/Hz pA/Hz
Offset Voltage Drift Bias Current Drift Offset Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density
VOS/T IB/T IOS/T VOH VOL IOUT ISC ZOUT PSRR ISY
4 100 2000 25 4.9 4.875 4.965 25 30 60 45 76 45 65 85 100 125
SR BWP tS GBP M en en in
0.45
0.92 70 6 1000 67 42 38 <0.1
f = 1 kHz f = 10 kHz
Rev. F | Page 5 of 20
AD8541/AD8542/AD8544 ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Supply Voltage (VS) Input Voltage Differential Input Voltage1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec)
1
THERMAL RESISTANCE
Rating 6V GND to VS 6 V -65C to +150C -40C to +125C -65C to +150C 300C
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5.
Package Type 5-Lead SC70 (KS) 5-Lead SOT-23 (RJ) 8-Lead SOIC (R) 8-Lead MSOP (RM) 8-Lead TSSOP (RU) 14-Lead SOIC (R) 14-Lead TSSOP (RU) JA 376 230 158 210 240 120 240 JC 126 146 43 45 43 36 43 Unit C/W C/W C/W C/W C/W C/W C/W
For supplies less than 6 V, the differential input voltage is equal to VS.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. F | Page 6 of 20
AD8541/AD8542/AD8544 TYPICAL PERFORMANCE CHARACTERISTICS
180 160 140 120 100 80 60 40 20
00935-005
VS = 5V VCM = 2.5V TA = 25C
INPUT BIAS CURRENT (pA)
400 350 300 250 200 150 100 50
00935-008 00935-010
VS = 2.7V AND 5V VCM = VS/2
NUMBER OF AMPLIFIERS
0 -4.5
-3.5
-2.5 -1.5 -0.5 0.5 1.5 2.5 INPUT OFFSET VOLTAGE (mV)
3.5
4.5
0 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
140
Figure 5. Input Offset Voltage Distribution
1.0 0.5
INPUT OFFSET VOLTAGE (mV)
Figure 8. Input Bias Current vs. Temperature
7
VS = 2.7V AND 5V VCM = VS/2
6
INPUT OFFSET CURRENT (pA)
VS = 2.7V AND 5V VCM = VS/2
0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -35 -15
5 25 45 65 85 TEMPERATURE (C) 105 125
5 4 3 2 1 0
145
00935-006
-35
-15
5
25 45 65 85 TEMPERATURE (C)
105
125
145
Figure 6. Input Offset Voltage vs. Temperature
9 8
INPUT BIAS CURRENT (pA)
VS = 2.7V AND 5V VCM = VS/2
POWER SUPPLY REJECTION (dB)
Figure 9. Input Offset Current vs. Temperature
160 140 120 100 80 60
+PSRR -PSRR VS = 2.7V TA = 25C
7 6 5 4 3 2 1
0.5 1.5 2.5 3.5 COMMON-MODE VOLTAGE (V) 4.5 5.5
00935-007
40 20 0 -20 -40 100
1k 10k 100k FREQUENCY (Hz) 1M 10M
0 -0.5
Figure 7. Input Bias Current vs. Common-Mode Voltage
Figure 10. Power Supply Rejection vs. Frequency
Rev. F | Page 7 of 20
00935-009
-4.0 -55
-1 -55
AD8541/AD8542/AD8544
10k
VS = 2.7V TA = 25C
SMALL SIGNAL OVERSHOOT (%) 50 60
1k
OUTPUT VOLTAGE (mV)
VS = 2.7V RL = 10k TA = 25C +OS
100 SOURCE 10 SINK
40
30
-OS
1
20
0.1
10
0.01
0.1 1 LOAD CURRENT (mA)
10
100
10
100 1k CAPACITANCE (pF)
10k
Figure 11. Output Voltage to Supply Rail vs. Load Current
3.0
Figure 14. Small Signal Overshoot vs. Load Capacitance
60
VS = 2.7V RL = 2k TA = 25C
SMALL SIGNAL OVERSHOOT (%)
2.5
VS = 2.7V VIN = 2.5V p-p RL = 2k TA = 25C
50
OUTPUT SWING (V p-p)
2.0
40
+OS
1.5
30
-OS
1.0
20
0.5
10
1k
10k
100k FREQUENCY (Hz)
1M
10M
10
100 1k CAPACITANCE (pF)
10k
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency
60
VS = 2.7V RL = TA = 25C +OS
Figure 15. Small Signal Overshoot vs. Load Capacitance
SMALL SIGNAL OVERSHOOT (%)
50
40
VS = 2.7V RL = 100k CL = 300pF AV = 1 TA = 25C
30
-OS
1.35V
20
10
10
100 1k CAPACITANCE (pF)
10k
00935-013
0
50mV
10s
Figure 13. Small Signal Overshoot vs. Load Capacitance
Figure 16. Small Signal Transient Response
Rev. F | Page 8 of 20
00935-016
00935-015
00935-012
0
0
00935-014
00935-011
0.01 0.001
0
AD8541/AD8542/AD8544
VS = 2.7V RL = 2k AV = 1 TA = 25C
90 80
COMMON-MODE REJECTION (dB)
VS = 5V TA = 25C
70 60 50 40 30 20 10 0
1k 10k 100k FREQUENCY (Hz) 1M 10M
00935-020
1.35V
500mV
10s
00935-017
-10
Figure 17. Large Signal Transient Response
5 4
INPUT OFFSET VOLTAGE (mV)
Figure 20. Common-Mode Rejection vs. Frequency
VS = 2.7V RL = NO LOAD TA = 25C
80
3 2 1 0 -1 -2 -3 -4
VS = 5V RL = NO LOAD TA = 25C
GAIN (dB)
60 40 20 0
45 90 135 180
PHASE SHIFT (Degrees)
00935-018
1k
10k
100k FREQUENCY (Hz)
1M
10M
-5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
COMMON-MODE VOLTAGE (V)
Figure 18. Open-Loop Gain and Phase vs. Frequency
160
POWER SUPPLY REJECTION RATIO (dB)
Figure 21. Input Offset Voltage vs. Common-Mode Voltage
10k
140 120 100 80 60 40 20 0 -20
VS = 5V TA = 25C
OUTPUT VOLTAGE (mV)
1k
VS = 5V TA = 25C
100
SOURCE SINK
-PSRR +PSRR
10
1
0.1
00935-019
1k
10k 100k FREQUENCY (Hz)
1M
10M
0.01
0.1 1 LOAD CURRENT (mA)
10
100
Figure 19. Power Supply Rejection Ratio vs. Frequency
Figure 22. Output Voltage to Supply Rail vs. Load Current
Rev. F | Page 9 of 20
00935-021
-40 100
0.01 0.001
00935-040
AD8541/AD8542/AD8544
5.0 4.5 4.0 VS = 5V VIN = 4.9V p-p RL = NO LOAD TA = 25C
60
VS = 5V RL = 2k TA = 25C
3.5 3.0 2.5 2.0 1.5 1.0 0.5
00935-022
SMALL SIGNAL OVERSHOOT (%)
50
OUTPUT SWING (V p-p)
40 +OS 30 -OS 20
10
1k
10k
100k FREQUENCY (Hz)
1M
10M
10
100 1k CAPACITANCE (pF)
10k
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,
5.0 4.5 4.0
Figure 26. Small Signal Overshoot vs. Load Capacitance
60
VS = 5V RL = TA = 25C
3.5 3.0 2.5 2.0 1.5 1.0 0.5
00935-023
SMALL SIGNAL OVERSHOOT (%)
VS = 5V VIN = 4.9V p-p RL = 2k TA = 25C
50
OUTPUT SWING (V p-p)
40
+OS
30
-OS
20
10
1k
10k
100k FREQUENCY (Hz)
1M
10M
100 1k CAPACITANCE (pF)
10k
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency
Figure 27. Small Signal Overshoot vs. Load Capacitance
60
VS = 5V RL = 10k TA = 25C
SMALL SIGNAL OVERSHOOT (%)
50
VS = 5V RL = 100k CL = 300pF AV = 1 TA = 25C
40 +OS 30 -OS 20
2.5V
50mV
10 100 1k CAPACITANCE (pF) 10k
00935-024
10s
0
Figure 25. Small Signal Overshoot vs. Load Capacitance
Figure 28. Small Signal Transient Response
Rev. F | Page 10 of 20
00935-027
10
00935-026
0
0 10
00935-025
0
0
AD8541/AD8542/AD8544
VS = 5V RL = 2k AV = 1 TA = 25C VIN VOUT VS = 5V RL = 10k AV = 1 TA = 25C
2.5V
2.5V
00935-028
1V
10s
1V
20s
Figure 29. Large Signal Transient Response
60 TA = 25C
Figure 31. No Phase Reversal
PHASE SHIFT (Degrees)
80
SUPPLY CURRENT/AMPLIFIER (A)
VS = 5V RL = NO LOAD TA = 25C
50
GAIN (dB)
60 40 20 0
40
45 90 135 180
30
20
10
00935-029
1k
10k
100k FREQUENCY (Hz)
1M
10M
0
1
2 3 4 SUPPLY VOLTAGE (V)
5
6
Figure 30. Open-Loop Gain and Phase vs. Frequency
Figure 32. Supply Current per Amplifier vs. Supply Voltage
Rev. F | Page 11 of 20
00935-031
0
00935-030
AD8541/AD8542/AD8544
55 50 VS = 5V 45 40 VS = 2.7V 35 30 25 20 -55
00935-034
SUPPLY CURRENT/AMPLIFIER (A)
VS = 5V MARKER SET @ 10kHz MARKER READING: 37.6nV/ Hz TA = 25C
00935-032
15nV/DIV
0
-35
-15
5
25 45 65 85 TEMPERATURE (C)
105
125
145
5
10 15 FREQUENCY (kHz)
20
25
Figure 33. Supply Current per Amplifier vs. Temperature
1000 900 800 700 VS = 2.7V AND 5V AV = 1 TA = 25C
Figure 35. Voltage Noise
IMPEDANCE ()
600 500 400 300 200 100 10k 100k 1M FREQUENCY (Hz) 10M 100M
00935-033
0 1k
Figure 34. Closed-Loop Output Impedance vs. Frequency
Rev. F | Page 12 of 20
AD8541/AD8542/AD8544 THEORY OF OPERATION
NOTES ON THE AD854X AMPLIFIERS
The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways, including lower supply current for 1 MHz gain bandwidth, higher output current, and better performance at lower voltages.
Higher Output Current
At 5 V single supply, the short-circuit current is typically 60 A. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing, or sinking. Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the AD8531/AD8532/AD8534 parts for output currents to 250 mA. Information on these parts is available from your Analog Devices, Inc. representative, and data sheets are available at www.analog.com.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 A of current per amplifier, which is much less than the 200 A to 700 A used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain.
Better Performance at Lower Voltages
The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60C, making the part easy to use.
Rev. F | Page 13 of 20
AD8541/AD8542/AD8544 APPLICATIONS
NOTCH FILTER
The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 36 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 37. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency.
5.0V R 100k R 100k 3 2 R/2 50k C 26.7nF C 26.7nF 8 U1 4
Figure 38 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FDNR) notch filter has fewer critical matching requirements than the twin-T notch, where as the Q of the FDNR is directly proportional to a single resistor R1. Although matching component values is still important, it is also much easier and/or less expensive to accomplish in the FDNR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FDNR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit.
R1 Q ADJUST 200 9 10
1/4 AD8544
U3 8
VOUT
VIN
2.5VREF
C1 1F R 2.61k C2 1F R 2.61k R 2.61k R 2.61k 2.5VREF 13 12 3 2 4 U1 11
1/4 AD8544
1
1/4 AD8544
7 U2
6 5
1/2 AD8542
1
VIN
2.5VREF
2C 53.6F
VOUT
f=
1 2 LC1
1/4 AD8544
U4 14 NC
00935-037
L = R2C2
VIN
1/2 AD8542
7 U2
f0 = f0 =
1 2RC 1
5 6
R2 2.5k
2.5VREF
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer
2.5VREF
Figure 36. 60 Hz Twin-T Notch Filter, Q = 10
5.0V R R 3 2 2C 7 U1 4
AD8541
6
VIN
2.5VREF
VOUT
00935-035
R1 4 1- R1 + R2
R1 97.5k
COMPARATOR FUNCTION
A comparator function is a common application for a spare op amp in a quad package. Figure 39 illustrates 1/4 of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 s propagation delay at 5 V and 5 s overload recovery time.
R2 1M
R1 1k
R/2
00935-036
C
C
VIN
2.5VREF 2.5VDC
VOUT
00935-038
Figure 37. 60 Hz Twin-T Notch Filter, Q = (Ideal)
1/4 AD8541
Figure 39. AD854x Comparator Application--Overload Detector
Rev. F | Page 14 of 20
AD8541/AD8542/AD8544
PHOTODIODE APPLICATION
The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration. Figure 40 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 M to avoid excessive output offset. In addition, a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include the following: * * * * Shielding the circuit. Cleaning the circuit board. Putting a trace connected to the noninverting input around the inverting input. Using separate analog and digital power supplies.
C 100pF R 10M OR V+ 2 3 D 4 7 6
VOUT
AD8541
00935-039
2.5VREF
2.5VREF
Figure 40. High Input Impedance Application--Photodiode Amplifier
Rev. F | Page 15 of 20
AD8541/AD8542/AD8544 OUTLINE DIMENSIONS
2.90 BSC
5.10 5.00 4.90
4 5
1.60 BSC
1 2 3
2.80 BSC
4.50 4.40 4.30
14
8
PIN 1 0.95 BSC 1.30 1.15 0.90 1.90 BSC
6.40 BSC
1 7
PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19
1.45 MAX
0.22 0.08 10 5 0 0.60 0.45 0.30
0.20 0.09
0.15 MAX
0.50 0.30
SEATING PLANE
SEATING COPLANARITY PLANE 0.10
8 0
0.75 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
COMPLIANT TO JEDEC STANDARDS MO-178-A A
Figure 41. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters
2.20 2.00 1.80 1.35 1.25 1.15 PIN 1 1.00 0.90 0.70
5 1 2 4 3
8.75 (0.3445) 8.55 (0.3366)
14 1 8 7
2.40 2.10 1.80
4.00 (0.1575) 3.80 (0.1496)
6.20 (0.2441) 5.80 (0.2283)
0.65 BSC 1.10 0.80 0.40 0.10 0.46 0.36 0.26
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122)
1.75 (0.0689) 1.35 (0.0531) SEATING PLANE
0.50 (0.0197) 0.25 (0.0098) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
0.10 MAX
0.30 0.15
SEATING PLANE
0.22 0.08
0.10 COPLANARITY COMPLIANT TO JEDEC STANDARDS MO-203-AA
COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 43. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters
Figure 44. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)
Rev. F | Page 16 of 20
060606-A
AD8541/AD8542/AD8544
3.20 3.00 2.80
3.10 3.00 2.90
3.20 3.00 2.80 PIN 1
8
5
1
5.15 4.90 4.65
8
5
4
4.50 4.40 4.30
1 4
6.40 BSC
0.65 BSC 0.95 0.85 0.75 0.15 0.00 0.38 0.22 SEATING PLANE 1.10 MAX 8 0 0.80 0.60 0.40
PIN 1 0.65 BSC 0.15 0.05 COPLANARITY 0.10 0.30 0.19 1.20 MAX SEATING 0.20 PLANE 0.09
0.23 0.08
8 0
COPLANARITY 0.10
0.75 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AA
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 45. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters
5.00 (0.1968) 4.80 (0.1890)
Figure 46. 8-Lead Thin Shrink Small Outline Package [TSSOP] (RU-8) Dimensions shown in millimeters
4.00 (0.1574) 3.80 (0.1497)
8 1
5 4
6.20 (0.2441) 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) 0.25 (0.0099) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
0.51 (0.0201) 0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
Rev. F | Page 17 of 20
012407-A
AD8541/AD8542/AD8544
ORDERING GUIDE
Model AD8541AKS-R2 AD8541AKS-REEL7 AD8541AKSZ-R2 1 AD8541AKSZ-REEL71 AD8541ART-R2 AD8541ART-REEL AD8541ART-REEL7 AD8541ARTZ-R21 AD8541ARTZ-REEL1 AD8541ARTZ-REEL71 AD8541AR AD8541AR-REEL AD8541AR-REEL7 AD8541ARZ1 AD8541ARZ-REEL1 AD8541ARZ-REEL71 AD8542AR AD8542AR-REEL AD8542AR-REEL7 AD8542ARZ1 AD8542ARZ-REEL1 AD8542ARZ-REEL71 AD8542ARM-R2 AD8542ARM-REEL AD8542ARMZ-R21 AD8542ARMZ-REEL1 AD8542ARU AD8542ARU-REEL AD8542ARUZ1 AD8542ARUZ-REEL1 AD8544AR AD8544AR-REEL AD8544AR-REEL7 AD8544ARZ1 AD8544ARZ-REEL1 AD8544ARZ-REEL71 AD8544ARU AD8544ARU-REEL AD8544ARUZ1 AD8544ARUZ-REEL1
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 5-Lead SC70 5-Lead SC70 5-Lead SC70 5-Lead SC70 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead TSSOP 8-Lead TSSOP 8-Lead TSSOP 8-Lead TSSOP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP
Package Option KS-5 KS-5 KS-5 KS-5 RJ-5 RJ-5 RJ-5 RJ-5 RJ-5 RJ-5 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 RU-8 RU-8 RU-8 RU-8 R-14 R-14 R-14 R-14 R-14 R-14 RU-14 RU-14 RU-14 RU-14
Branding A4B A4B A12 A12 A4A A4A A4A A4A# A4A# A4A#
AVA AVA AVA# AVA#
Z = RoHS Compliant Part; # denotes RoHS compliant product may be top or bottom marked.
Rev. F | Page 18 of 20
AD8541/AD8542/AD8544 NOTES
Rev. F | Page 19 of 20
AD8541/AD8542/AD8544 NOTES
(c)2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00935-0-1/08(F)
Rev. F | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of AD854108

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X